Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Biophysics (Oxf) ; 67(5): 775-778, 2022.
Article in English | MEDLINE | ID: covidwho-2193591

ABSTRACT

The review considers the role that selenium plays in RNA virus infections and, in particular, COVID-19. Many RNA viruses are selenium dependent because antisense interactions arise between viral RNAs and host mRNA regions containing the selencysteine insertion sequence to cause selenium deficiency, oxidative stress, immune response impairment, etc. Sodium selenite is a licensed selenium-containing product and is widely used in medicine, veterinary, and agriculture. Its advantages include the following. Sodium selenite rapidly penetrates through cell membranes in all tissues of the body; is intensely involved in metabolic processes accompanied by oxidation of sulfur-containing cell proteins; exerts an antiaggregation effect by reducing thromboxane activity; interrupts the contact of a virion (SARS-CoV-1 and SARS-CoV-2) with the membrane of a healthy cell; and suppresses NF-κB activity, which significantly increases in coronavirus infections. Arguments supporting the use of sodium selenite as adjuvant therapy in COVID-19 are discussed.

2.
Bull Exp Biol Med ; 172(3): 283-287, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1611428

ABSTRACT

We studied laboratory parameters of patients with COVID-19 against the background of chronic pathologies (cardiovascular pathologies, obesity, type 2 diabetes melitus, and cardiovascular pathologies with allergy to statins). A decrease in pH and a shift in the electrolyte balance of blood plasma were revealed in all studied groups and were most pronounced in patients with cardiovascular pathologies with allergy to statin. It was found that low pH promotes destruction of lipid components of the erythrocyte membranes in patients with chronic pathologies, which was seen from a decrease in Na+/K+-ATPase activity and significant hyponatrenemia. In patients with cardiovascular pathologies and allergy to statins, erythrocyte membranes were most sensitive to a decrease in pH, while erythrocyte membranes of obese patients showed the greatest resistance to low pH and oxidative stress.


Subject(s)
COVID-19/complications , Hyponatremia/etiology , Hypoxia/complications , Sodium-Potassium-Exchanging ATPase/physiology , Aged , COVID-19/metabolism , Cardiovascular Diseases/complications , Cardiovascular Diseases/metabolism , Cardiovascular Diseases/virology , Case-Control Studies , Chronic Disease , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/virology , Drug Hypersensitivity/complications , Drug Hypersensitivity/metabolism , Drug Hypersensitivity/virology , Erythrocyte Membrane/metabolism , Erythrocytes/metabolism , Female , Fluid Shifts/physiology , Humans , Hydrogen-Ion Concentration , Hydroxymethylglutaryl-CoA Reductase Inhibitors/adverse effects , Hyponatremia/metabolism , Hyponatremia/virology , Hypoxia/metabolism , Lipid Peroxidation/physiology , Male , Middle Aged , Obesity/complications , Obesity/metabolism , Obesity/virology , Oxidative Stress/physiology , SARS-CoV-2/physiology , Sodium/metabolism , Stress, Physiological/physiology
SELECTION OF CITATIONS
SEARCH DETAIL